
AN IMAGE SIGNATURE FOR ANY KIND OF IMAGE

H. Chi Wong, Marshall Bern, andDavid Goldberg

Xerox Palo Alto Research Center
3333 Coyote Hill Rd., Palo Alto, CA 94304

ABSTRACT

We describe an algorithm for computing an image signature,
suitable for first-stage screening for duplicate images. Our
signature relies on relative brightness of image regions, and
is generally applicable to photographs, text documents, and
line art. We give experimental results on the sensitivity and
robustness of signatures for actual image collections, andalso
results on the robustness of signatures under transformations
such as resizing, rescanning, and compression.

1. BACKGROUND AND MOTIVATION

Massive image databases are becoming increasingly com-
mon. Examples include document image databases such as
declassified government documents [8], and photo archives
such as the New York Times archive. Duplicate removal of-
fers space and bandwidth savings, and more user-friendly
search results. Despite some effort to cull duplicates, theim-
age search service of Google [4] often retrieves a number
of duplicate and near-duplicate images. Duplicate detection
also finds application in copyright protection and authenti-
cation.

We believe that duplicate detection is most effectively
solved in two distinct stages. A fast first stage reduces im-
ages to smallsignatures, with the property that signatures
of two different versions of the same image have small vec-
tor distance relative to the typical distance between signa-
tures of distinct images. A slow second stage then makes
a detailed comparison of candidate duplicates identified in
the first stage. Detailed comparison of document images can
identify changes as small as moving a decimal point [16].

In this paper we give a fast and simple algorithm for the
first stage. Our image signature encodes the relative bright-
ness of different regions of the image; it can be applied quite
generally to text document images, line art (such as cartoons),
and continuous-tone images. Although there are a number
of image signature schemes already in the literature, there
is no one signature that applies to such a wide class of im-
ages. The main limitation of our signature is that it is not de-
signed to handle large amounts of cropping or rotation. This
design choice is appropriate for document image databases

and Web search, but not for object recognition or for detect-
ing copyright violations.

2. PREVIOUS WORK

Image signatures have already been used to address three dif-
ferent, but closely related, problems: similarity search,au-
thentication, and duplicate detection. The three problemshave
slightly different characteristics that affect the designof the
signature. Signatures for similarity search [10] (for exam-
ple, color histograms) must preserve similarity, not just iden-
tity, and hence do not necessarily spread out non-duplicates
very effectively. Signatures for authentication [1, 11, 13, 15]
must be more sensitive—but can be much slower—than sig-
natures for the first stage of duplicate detection.

Nevertheless, the techniques developed for search and
authentication can be harnessed for duplicate detection. Our
work adapts a method by O’Gorman and Rabinovich [11]
for computing a signature for ID card photos. Their method
places an8�10grid of points on the ID card photo and com-
putes a vector of 8 bits for each point in the grid; roughly
speaking, each bit records whether a neighborhood of that
point is darker or lighter than a neighborhood of its 8 diag-
onal or orthogonal neighbors. In the usage scenario, the im-
age signature computed from the photo is compared with a
reference signature written on the ID card and digitally signed
with public-key cryptography.

Another technique worth considering lets the image con-
tent dictate the neighborhoods used in the signature [1, 14].
Schmid and Mohr [14] use a corner-point detector to define
“interesting points” in the image. The signature then includes
a statistical abstract of the neighborhood of each interesting
point. Compared to grid-based methods such as ours, this
approach has the advantage that it can handle large amounts
of cropping, and if the statistics at each interesting pointare
rotation invariant, it can also handle arbitrary amounts ofro-
tation. On the other hand, it seems to take several hundred
interesting points to obtain a reliable signature, and thisap-
proach is likely to break down entirely for text documents or
line art images, which may contain thousands of interesting
points with very similar statistics.

Also available in the literature are specialized signature



methods for document images, using optical character recog-
nition [5, 8] or document-specific features such as paragraph
layout, line lengths, and letter shapes [2, 3]. We expect that
these specialized methods are more accurate than our own
generic method. Our method, however, should performquite
well for first-stage filtering, reducing the number of possible
duplicate pairs by a factor of hundreds or thousands, where-
upon still more accurate and detailed full-image matching
algorithms [9, 12, 16] can be used for the slow second-stage
matching.

(a) A 150� 196 image. (b) A 180� 240 image.

Fig. 1. “Naturally occurring” duplicates: two images of the
Mona Lisa downloaded from the Web.

3. THE SIGNATURE

Ideally, we would like a signature that is small enough to
allow efficient nearest-neighbor search, sensitive enoughto
effectively filter a database for possible duplicates, and yet
robust enough to find duplicates that have been resized, res-
canned, or lossily compressed. Figure 1 shows black-and-
white versions of a typical duplicate pair. These are black-
and-white versions of two different JPEG-compressed color
images of the Mona Lisa downloaded from the Web. The
images have different sizes, gray values, and cropping (look
at the fingers).

We now describe the steps of our algorithm in detail. Al-
though inspired by the signature algorithm of O’Gorman et
al. [11], our algorithm differs at almost every step. For ex-
ample, we added something to handle mild cropping, and
expanded O’Gorman’s two-level relative darkness values—
simply “darker” or “lighter”—to five levels to give greater
sensitivity and robustness.

Step 1. If the image is color, we first convert it to 8-bit gray-
scale using the standard color-conversionalgorithms included

in djpeg andppmtopgm. Pure white is represented by 255
and pure black by 0.

Step 2. We next impose a9� 9 grid of points on the image.
(For large databases, a bigger grid such as11�11would give
greater first-stage filtering.) We define the grid in a way that
is robust to mild cropping, under the assumption that such
cropping usually removes relatively featureless parts of the
image, for example, the margins of a document image or the
dark bottom of the Mona Lisa picture. For each column of
the image, we compute the sum of absolute values of differ-
ences between adjacent pixels in that column. We compute
the total of all columns, and crop the image at the 5% and
95% columns, that is, the columns such that 5% of the total
sum of differences lies on either side of the cropped image.
We crop the rows of the image the same way (using the sums
of original uncropped rows).

Conceptually, we then divide the cropped image into a10� 10 grid of blocks. We round each interior grid point to
the closest pixel (that is, integer coordinates), thereby setting
a9� 9 grid of points on the image.

Step 3. At each grid point, we compute the average gray
level of theP �P square centered at the grid point. We ran
our experiments withP = max� 2; b:5 +minfn; mg=20c 	;
wherem andn are the dimensions of the image in pixels.
The squares are slightly soft-edged, meaning that instead of
using the pixel’s gray levels themselves, we use an average
of a 3 � 3 block centered at that pixel. Figure 2 shows the
grid of squares for half-size versions of each of the images
from Figure 1.

Step 4. For each grid point, we compute an 8-element array
whose elements give a comparison of the average gray level
of the grid point square with those of its eight neighbors. The
result of a comparisoncan be “much darker”, “darker”, “same”,
“lighter”, or “much lighter”, represented numerically as -2,
-1, 0, 1 and 2, respectively. The “same” values are those av-
erages that differ by no more than 2 on a scale of 0 to 255.
We set the boundary between “much darker” and “darker”
so that these two values are equally popular; we do the same
for “lighter” and “much lighter”. The rationale in this stepis
that “same” may be very common in images with flat back-
grounds (such as text documents), and hence it should not be
included in the histogram equalization applied to the other
values. Grid points in the first or last rows or column have
fewer than 8 neighbors; for simplicity we fill in the missing
comparisons—there are 104 of them—in the array with ze-
ros.

Step 5. The signature of an image is simply the concatena-
tion of the 8-element arrays corresponding to the grid points,
ordered left-to-right, top-to-bottom. Our signatures arethus



vectors of length648. We store them in 648-byte arrays, but
because some of the entries for the first and last rows and
columns are known to be zeros and because each byte is used
to hold only 5 values, signatures could be represented by as
few asd544 log2 5e = 1264 bits.

(a)3� 3 squares. (b) 5� 5 squares.

Fig. 2. The grid squares for the Mona Lisa images.

4. NEAREST NEIGHBORS

Thenormalized distance �(u; v) between two image signa-
turesu andv is ku�vk=(kuk+kvk), wherek �k represents
theL2 norm of a vector, that is, its Euclidean length. Rela-
tive to theL1 norm (or Hamming distance, as used in [11]),
theL2 norm gives greater emphasis to larger differences; this
is appropriate because a difference of 1 at a coordinate may
be due to roundoff, but a difference of 2 is meaningful.

It is necessary to normalize the distance, rather than just
usingku � vk, in order to compare the distance against a
fixed threshold. A threshold of:6 seems to be a good choice,
giving reasonable robustness to image transformations with-
out admitting very many false matches. For text documents,
a slightly lower threshold is better, because their signatures
usually have many more zeros than do the signatures of conti-
nuous-tone images. An easy fix, which allows the use of a:6 threshold for any type of image, is to change basic arith-
metic: count the difference between a 0 and a 2 or�2 inku � vk as 3. We used this fix in the experiments reported
below.

Given a query signatureu, we now need a way to find all
signaturesv in a database within normalized distance of:6 or
less. The usual way to accomplish this task involves chop-
ping up the signatures into (possibly non-contiguousand over-
lapping)words of k bytes, and finding allv’s that exactly
matchu on some word. For each of theN word positions, an
index table points to all the signatures with each given word.
The parametersk andN are chosen so that anyv within nor-

malized distance of:6 is sure to match on at least one word,
and so that the space requirement of the index tables is not
too large. This method solves the problem of nearest-neighbor
search in high dimensions by finding exact matches in a num-
ber of lower-dimensional projections. There are also more
sophisticated algorithms and analysis of nearest neighborsearch
in high dimensions [6, 7].

In our case, a normalized distance of:6 allowsu andv to
differ at every byte, so there is no good choice of word lengthk. Therefore we propose that in the index tables, we lump
together�2 and�1, that is, represent them both by�1, and
similarly lump together2 and1. The table entries, although
indexed by a words over 3 possible letters, still point to the
more precise 5-letter signatures. Now a reasonable choice
would bek = 10 andN = 100. A signaturev within:6 of the queryu is very likely to match on some word. If
each letter of the lumped version ofv has probability:75 of
matching the corresponding letter in the lumped version ofu, then each word has probability:7510 � :05 of matching,
and hence the chance that at least one of 100 words match
is about1 � :05100, which is greater than .993. A random
signaturev, however, is unlikely to match on some word. If
each letter of lumpedv has probability:5 of matching the
corresponding letter in lumpedu, then each word has prob-
ability :5100 � :001 of matching, and hence the chance that
at least one of the 81 words match is about1�:999100 � :10.
Hence only about 10% of the database signatures need to
have their actual normalized distances tou computed. Be-
cause the computation of normalized distances is very fast,
this should be quite tolerable for a million-image database.
Larger values ofN would give greater discriminating power
but use more memory space. AsN grows larger, signatures
within :6 would tend to have many more word matches than
random signatures.

Notice that with this method for nearest-neighborsearch-
ing, the overall image duplicate detection process becomesa
three-level scheme. The indexing on words finds candidate
signature pairs, which in turn lead to candidate image pairs.

5. RESULTS

We tested the robustness (the “recall”) of our algorithm on
both synthetic and natural data. The synthetic data consist
of a set of original images (600 photo CD images, belong-
ing to 6 themes - Michelangelo, transportation, cityscape,
etc - and 170 document images - pages from a Ph.D. thesis)
and their synthetic duplicates, generated by rotating, resiz-
ing, and compressing/decompressing the originals. The bar
charts below show the robustness of our algorithm in finding
synthetic duplicates. The natural data consist of 10 sets of
images downloaded from the Web, each containing a num-
ber of visually (close-to-)identical images of different sizes,
with different amounts of cropping, and some even with slight



color differences. Our algorithm handles well these natu-
rally occurring duplicates, failing only in cases where there
is a significant amount of cropping or color difference.
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We also tested the sensitivity (the “precision”) of our al-
gorithm by running it on our original set of photo CD images
and document images. The table below shows the average
number of false positives returned for each type of images.

image type average # of false positives
photo CD images 0.53 (in a total of 600)
document images 4.05 (in a total of 170)

As future work, we plan to conduc studies comparing
our method with other existing methods.
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